“i‘ UNIVERSITY OF
CECY
Y TORONTO

Controlling the Black Box:
Learning Manipulable and Fair Representations

Richard Zemel

Vector Institute and University of Toronto

Richard Zemel Vector Institute & University of Toronto 11/15/2019



Deep Learning Defined

Deep Learning model: neural network that maps input to output
via a series of simple transformations (layers)

Each layer composed of units
Simple computation determines unit’s activity

Key: values of weights

_ hidden layer 1 hidden layer 2
input laver
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Deep Learning Defined

Deep Learning model: neural network that maps input to output
via a series of simple transformations (layers)

Each layer of the network — a new representation of the input

. hidden layer 1
input laver
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Example:

e Image classification— each pixel an input dimension, output
= cat, dog, etc.
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Progress 1in Machine Learning

Supervised learning: Deep Learning’s biggest success
stories

e Recognizing objects 1n 1mages

¢ Machine translation: English sentences —> French
sentences

e Mapping sensors (images, LIDAR) to controls for
driving

Most noteworthy advance: not performance on individual
tasks, but 1in developing the intermediate representations
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Multi-Purpose Image Representations

Most intriguing result: decapitate network — penultimate
layer representations useful for many other image tasks

hidden laver 1 hidden laver 2
input laver
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Multi-Purpose Image Representations

Most intrigquing result: decapitate network — penultimate
layer representations useful for many other image tasks

person : 0.989

Richard Zemel Vector Institute & University of Toronto 11/15/2019



It's Representations ALL the Way Down
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Generally Useful Neural Representations

Richard Zemel Vector Institute & University of Toronto 11/15/2019



Aim: Study & Develop Strong Representations

How to develop good representations, that can be useful 1in
multiple tasks?

Key: Generative Model — system that can produce inputs
Motivation:
e Test that information not lost about input

® Generalize: generate related but novel inputs

e Construct density model of inputs — anomaly detection
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Autoencoder

Original formulation of generative model

Malin 1dea:

e Encoder maps input to a vector, via a multi-layer
neural network

e Decoder maps vector to an estimate of the input

Objective used to optimize/learn the network parameters
based on information theoretic formulation: bits required
to recover original 1input given the estimate
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Early Autoencoder Formulation

SENDER RECEIVER

Representation
(Hidden)

Zemel & Hinton (1995)
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Outline

— Key aim: Learn strong representations via generative
model

— Examples of approach, utility:
1. Expose variables to control fabrication of new items
2.Develop fair automated decision makers

3.Build more robust classifiers

—Conclusions & current directions
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Outline

— Key aim: Learn strong representations via generative
mode L

— Examples of approach, utility:
1. Expose variables to control fabrication of new 1items
2.Develop fair automated decision makers

3.Build more robust classifiers

—Conclusions & current directions

Richard Zemel Vector Institute & University of Toronto 11/15/2019









Conditional Subspace Autoencoder

Ideally can discover relevant underlying structure in purely
unsupervised manner

However, ill-posed problem to find interpretable, manipulable

representations

Assume access to additional labels, e.g., 1mage tags

Goals:

1. Learn representations that uncover latent structure
correlated with labels (conditional subspace)

2. Expose these representations — easy to interpret and
manipulate when generating or modifying data
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Background: Variational Autoencoder (VAE)

Re-formulation of autoencoders:

— Each 1nput encoded into a distribution in latent space

— Qutput prediction obtained by sampling from
distribution, mapping through decoder

Encoder q(z|x) Decoder p,(x|z)

Reconstruction: x

Allows maximum-likelihood based density modeling:

10gPg(X) 2 E, 15 [lo2 py(x12)] = D (219 || p(@))
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Conditional Subspace VAE: Graphical Model

Assume access to additional relevant information y

Form rich latent representation of vy

Encoder Decoder
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CSVAE: Training Objective
min M | + Py M 5 max fi3./)'
0.,y 0

Extend standard VAE: model of observations X,y
%1 — [EQZ(X,y){_[Eqd)(z,WlX,y) [102%]79 (X|W>Z>] +DKL <Q¢ (WlX, Y) ” py (W|Y)>

+Dy; (44 (21%.) | p@) — logp (y))

Adversary trying to maximize information about y in z

¥ = Eyuinainy) |45 (¥12)

Model fighting adversary: minimize information about y in z

My =Ey (z1x)2x) [ g5 (y12) log g5 (y|z) dy
Y
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CSVAE: Exploring Latent Space
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CSVAE: Joint Attribute Transfer
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CSVAE: Quantitative Evaluation

Accuracy
TFD CelebA-Glasses CelebA-FacialHair

VAE 19.08% 25.03% 49.81%
CondVAE 62.97% 96.04% 88.93%
CondVAE-info  62.27% 95.16% 83.03%
CSVAE (ours) 76.23% 99.59 % 97.75 %

target - changed original - changed target - original

VAE 75.8922 13.4122 91.2093
CondVAE 74.3354 18.3365 91.2093
CondVAE-info 74.3340 18.7964 91.2093
CSVAE (ours) 71.0858 28.1997 91.2093

Richard Zemel Vector Institute & University of Toronto 11/15/2019



Generating with Style

We were barely able to catch the breeze at the beach , and it felt as if
someone stepped out of my mind . She was in love with him for the first
time in months , so she had no intention of escaping . The sun had risen
from the ocean , making her feel more alive than normal . She 's beautiful ,
but the truth is that | do n't know what to do . The sun was just starting to
fade away , leaving people scattered around the Atlantic Ocean . | d seen
the men in his life , who guided me at the beach once more .
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Generating with Style

(#3) Results

You re the only person on the beach right now
you know

| do n't think | will ever fall in love with you

and when the sea breeze hits me

| thought

Hey
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Generating with Style

Generated story about image
Model: Romantic Novels

“He was a shirtless man
in the back of his mind,
and I let out a curse as
he leaned over to kiss
me on the shoulder.

He wanted to strangle
me, considering the be-
atiful boy I'd become
wearing his boxers.”

Richard Zemel Vector Institute & University of Toronto 11/15/2019



Outline

— Key aim: Learn strong representations via generative
mode L

— Examples of approach, utility:
1. Expose variables to control fabrication of new items
2.Develop fair automated decision makers

3.Build more robust classifiers

—Conclusions & current directions
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Fairness in Automated Decision Making

Algorithmic unfairness: Algorithms are pervasive,
high—-stakes, high—impact

Need more than just "accuracy”
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Fair Classification

Explosion of fairness research over last five years

Fair classification is the most common setup, involving:
e X, some data

Y, a label to predict
YY", the model prediction

*A, a sensitive attribute (race, gender, age, SES)
We want to learn a classifier that 1is:

*accurate
e fair with respect to A
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Fair Representations

Classification: a tale of two parties

e Example: targeted advertising: Owner — Vendor — Prediction
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Data Owner Vendor
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FAIRNESS THROUGH AWARENESS

Dwork, Hardt, Pitassi, Reingold, Zemel, 2012

Society ! Vendor

X a¥

Goal: Assign individual X representation Z by being

aware of membership in group A

(1). Individual Fairness: Treat similar individuals similarly

(2). Group Fairness: equalize two groups (A=1 = minority;
A=0 is majority) at the level of outcomes (statistical parity)
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FAIR REPRESENTATION LEARNING: FRAMEWORK

Zemel. Wu, Swersky, Pitassi, Dwork, 2013

1 Society ! Vendor

A=
ﬁm% $/$ oY

Goal: Learn a mapping from X to distributions over

representations Z that is fair

Aims for Z:
1. Lose information about A:
P[Z=k | A=1] = P[Z=k | A=0]
2. Retain information about X
3. Preserve information for classification so vendor can
max utility [decisions Y = g(Z)]
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LEARNING ADVERSARIALLY FAIR
TRANSFERABLE REPRESENTATIONS

Madras, Creager, Pitassi, Zemel, 2018

[ EncoderI Decoder

* The classifier is indifferent vendor, forcing the encoder to make
the representations useful

« The adversary is the malicious vendor, forcing the encoder to
hide the sensitive attributes in the representations
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Learning Flexibly Fair Representations

Important limitation: only considering single, fixed sensitive
attribute

Typically several, and which ones apply to a single situation
1s not known a priori

Aim: learn flexibly fair representations — can be adapted to a
variety of protected groups and their intersections:

eSimple: easily adapt to different protected attributes

e Compositional: fair to conjunctions of variables (subgroup
discrimination — fair to women, not black women over 60)

e Transferrable: same representation applies to several
downstream tasks
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Flexibly Fair VAE (FFVAE)

Unsupervised training: no Y, but are given full range of
sensitive attributes, values A

Test time: specify subset of sensitive attributes and
target Y

vy W]
.l B B N target label

non-sensitive latents sensitive latents

Training Testing
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FFVAE Objective

Aim for latent representations that are:
1.Predictive — dimension of latent code corresponds to
single underlying factor: high MI(bi, ai)

2.Disentangled - posterior factorizes

reconstruction predictiveness
LepyAEP> @) = B pinllog p(x|z,b) + alog p(a|b)]
~yDi1q(z. b) | 19@) [ [ 901 — iy [a(z.b1%) | | p(z. b))

J
disentanglement prior
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FFVAE Experiments

—DSpritesUnfair: vary in color, shape, scale, orientation,
Xposition, Yposition; Xposition and Shape sensitive
—Difficult due to positive correlation in sensitive attributes

—Communities and Crime: neighborhood statistics — sensitive
attributes racePctBlack, blackPerCap, pctNotSpeakEngliWell; predict
violentCrimesPerCap

—CelebA: male, eyeglasses, chubby as sensitive attributes; tested
on pairwise combinations, predict heavy-makeup, then attractive
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Outline

— Key aim: Learn strong representations via generative
mode L

— Examples of approach, utility:
1. Expose variables to control fabrication of new items
2.Develop fair automated decision makers

3.Build more robust classifiers

—Conclusions & current directions
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Invertible Deep Networks

— Fairly recent development 1in deep networks: invertible
networks

— Invertible (aka Reversible, Bijective) Networks retain
all information about input

(a) Forward propagation (b) Inverse propagation

“Density Estimation using Real NVP”, Dinh et al., 2017

— Invertible networks with tractable Jacobian determinant,
inverse allow maximum-likelihood based density modeling:

log p.(x) =log p.(2) +log | Jp(x) |

— Can also build strong invertible classifiers: loss of
information 1s 1isolated to final linear layer
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Accessing Decision-space of Invertible Classifiers

&) &)

{ 000000000

Fy(x)

X 000000000

Simplified readout structure: subset of dimensions
represents logits of classifier

exp(ly)
2. exp(l)

ple|x) =
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Investigating Pre—images
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Richard Zemel

Excessive Invariance Across Tasks

1-RevNet 1-RevNet SOTA ResNet
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Instead of learning about discriminative features for
task, we have created analytical adversarial attack

Deep classifiers are too invariant to task-relevant
changes on various problems
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Sampling from Logit Pre-image

Top-1: Bullfrog Top-1: Bullfrog Top-1: Bullfrog Top-1: Bullfrog Top-1: Bullfrog Top-1: Bullfrog Top-1: Bullfrog

Top-1000: Tiger shark Top-1000: Tiger shark Top-1000: Tiger shark Top-1000: Tiger shark Top-1000: Tiger shark Top-1000: Tiger shark Top-1000: Tiger shark

—Discarded part of signal dominates image content!

— Logits only capture a fraction of information relevant to humans
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Step Back: Primer on Adversarial Examples

Distribution shift: distribution of test examples
differs from training distribution.

— Core 1dea of adversarial example research:
benchmark generalization under distribution shift

— Deep nets exhibit striking, unintuitive failures

Adversarial Noise

“vulture” “orangutan”

TYNUT ‘ Adversarial Photographer
granola bars R

| o _'\.. 7

’ _ 5 . . k

Unrestricted Adversarial Examples, Brown et al., 2018

— Poor understanding of failures, few theoretical guarantees

— Invertible networks give new angle to formalize the problem!
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Invariance-based Adversarial Examples

—Norm-bounded adversarial examples benchmark stability

— Invariance—-based adversarial examples are
complementary to perturbation-based: benchmark
excessive ilnvariance

(Classical)
Perturbation-based
Adversarial Examples

F(x) # F(x*)
y =y*

Invariance-based
Adversarial Examples

F(x) = F(x*)
y £ y*

Intuitively:

Which task-relevant changes can be applied to the
input that do not change the prediction?
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Relationship Non-trivial!

Solving perturbation robustness may increase invariance
vulnerability

—> Excessive stability leads to new erroneous invariances

(Classical)
Perturbation-based
Adversarial Examples

F(x) # F(x™*)
y =y*

Invariance-based
Adversarial Examples

F(x) = F(x*)
‘ y ?é y>x<

Need to control perturbation and invariance robustness
alongside accuracy for models to generalize well

But: How to control task—-dependent invariance?
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Insufficiency of Standard Objective

Information preservation allows us to “collect”
invariant part of the signal:

I(y; x) = I(y; F{(x))

= 1(y;z%, 7%
= 1(y;2%) + 1(y; 2| 2%)

Standard Cross—Entropy classification loss
maximizes bound on mutual information:

argmax,, 1(y; z¢)

No incentive to explain all task-relevant variability!
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Enforce Information Separation

No incentive to explain all task-relevant variability!

A way out, maximize conditional mutual information:

argmax,, 1(y;z?|z?)

In practice, extend vanilla cross—entropy objective:

C
min &, (0,0 ) = — v.log F%(x).
p lCE( nc) lzzl Vi g 9( )l

=L (0)
With independence term:

0

nc

C C
min max Z;-(0,0,.) = Z — y;log F S(x); + Z yilog Dy (F"(x));
9 nc

=:35CE(H> =:gnCE(9’an)
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Independence Cross—entropy 1n Practice

Cross-entropy Adversarial Examples Independence Cross-entropy

\S]‘mm 45135 2\ 70 ¢/ OZS\?‘I +F4 5135 2\V70 ¢/ 028\ 917

3 ' 245617106 27797 028199

\,,fmm 0000 727222727 388238282183 000000 72272227 8828232383

Z_Nn governs nuisances, z_s the true task semantics

Transformations in z_n space now cannot change class identity

Not possible to create invariance-based adversarial examples
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Breaking Classifier, one Pixel/Reqularity at a Time
D

train

Obfe Lé’:f}" 1. pADRL A

3J' ;*‘f"\ulﬁ KWQF;’?@

wxggwpms &
2030l A6

\"0’0:
™ . - ]
SR

Binary Textured
% Error Dtrain DAdv % Error Dtrain DAdv
CE ResNet 00.00 73.80 CE ResNet 00.00 87.83
CE fiRevNet  00.00 57.09 CE fiRevNet  00.18 73.71
iICE fiRevNet 00.02 34.73 iICE fiRevNet 00.53 59.99

Difference 00.02 38.33 Difference 00.53 27.84
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Conclusions

e Can learn manipulable subspace — range of novel examples

e Methods enable control over information contained in learned
representations

e Invertible models allow insight into learned classifiers:
—1nvariance needs to be controlled
—learn models that generalize well

e Underlying theme: information separation 1in representations
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Current Directions

e Application, extension of techniques to holy grail of
ML: semi-supervised learning (few labeled examples)

e Transfer learning: how do controlled representations
enable transfer / learning of new tasks?

e White—box models: incorporate known variables, relations

e Uncertainty representations: can model know what it
knows and does not know?
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