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Deep Learning Defined 

Deep Learning model: neural network that maps input to output 
via a series of simple transformations (layers) 

Each layer composed of units 

Simple computation determines unit’s activity 

Key: values of weights
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Deep Learning Defined 

Deep Learning model: neural network that maps input to output 
via a series of simple transformations (layers) 

Each layer of the network - a new representation of the input

Example:  

•Image classification– each pixel an input dimension, output 
= cat, dog, etc.

“HIPPO”
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Progress in Machine Learning 

Supervised learning: Deep Learning’s biggest success 
stories 

• Recognizing objects in images 
• Machine translation: English sentences —> French 
sentences 

• Mapping sensors (images, LIDAR) to controls for 
driving 

Most noteworthy advance: not performance on individual 
tasks, but in developing the intermediate representations
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Multi-Purpose Image Representations
Most intriguing result: decapitate network —> penultimate 
layer representations useful for many other image tasks
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Multi-Purpose Image Representations
Most intriguing result: decapitate network —> penultimate 
layer representations useful for many other image tasks



Vector Institute & University of TorontoRichard Zemel 11/15/2019

It’s Representations All the Way Down 
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Generally Useful Neural Representations
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Aim: Study & Develop Strong Representations 

How to develop good representations, that can be useful in 
multiple tasks? 

Key: Generative Model — system that can produce inputs 

Motivation:  

•Test that information not lost about input 
•Generalize: generate related but novel inputs 
•Construct density model of inputs — anomaly detection 
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Autoencoder

Original formulation of generative model 

Main idea:  

•Encoder maps input to a vector, via a multi-layer 
neural network 

•Decoder maps vector to an estimate of the input 

Objective used to optimize/learn the network parameters 
based on information theoretic formulation: bits required 
to recover original input given the estimate



Vector Institute & University of TorontoRichard Zemel 11/15/2019

Early Autoencoder Formulation

- Supervised Classification: Deep Learning’s biggest success story 

- Most noteworthy ability: learning representations that are useful 
for other tasks 

Natural Language Processing: word vectors 
Computer Vision: image features

- A lot of variability needs to be discarded throughout the layers!

Zemel & Hinton (1995)
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Outline

- Key aim: Learn strong representations via generative 
model 

- Examples of approach, utility: 

1.Expose variables to control fabrication of new items 

2.Develop fair automated decision makers 

3.Build more robust classifiers 

-Conclusions & current directions
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Can we make this person look sad?
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Can we make this person look happy?
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Conditional Subspace Autoencoder

Ideally can discover relevant underlying structure in purely 
unsupervised manner 

However, ill-posed problem to find interpretable, manipulable 
representations 

Assume access to additional labels, e.g., image tags 

Goals: 

1. Learn representations that uncover latent structure 
correlated with labels (conditional subspace) 

2. Expose these representations — easy to interpret and 
manipulate when generating or modifying data 
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Background: Variational Autoencoder (VAE)

Re-formulation of autoencoders:  
- Each input encoded into a distribution in latent space 
- Output prediction obtained by sampling from 
distribution, mapping through decoder 

Allows maximum-likelihood based density modeling:

log pθ(x) ≥ 𝔼qϕ(z|x) [log pθ(x |z)] − DKL (qϕ(z |x) ∥ p(z))
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Conditional Subspace VAE: Graphical Model

Encoder Decoder

Assume access to additional relevant information y

Form rich latent representation of y
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CSVAE: Training Objective

min
θ,ϕ,γ

β1ℳ1 + β2ℳ2

ℳ1 = 𝔼𝒟(x, y){−𝔼qϕ(z, w |x, y) [log pθ (x |w, z)] + DKL (qϕ (w |x, y) ∥ pγ (w |y))
+DKL (qϕ (z |x, y) ∥ p (z)) − log p (y)}

max
δ

β3𝒩

ℳ2 = 𝔼qϕ(z |x)𝒟(x) [∫Y
qδ (y |z) log qδ (y |z) dy]

𝒩 = 𝔼q(z |x)𝒟(x, y) [qδ (y |z)]
Adversary trying to maximize information about y in z

Model fighting adversary: minimize information about y in z

Extend standard VAE: model of observations x,y
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CSVAE: Exploring Latent Space
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CSVAE: Joint Attribute Transfer
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CSVAE: Quantitative Evaluation
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Generating with Style
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Fairness in Automated Decision Making

Algorithmic unfairness: Algorithms are pervasive,             
high-stakes, high-impact 

Need more than just ”accuracy”
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Fair Classification

Explosion of fairness research over last five years 

Fair classification is the most common setup, involving: 
•X, some data 
•Y, a label to predict 
•Y ̂, the model prediction 
•A, a sensitive attribute (race, gender, age, SES) 

We want to learn a classifier that is: 
•accurate 
•fair with respect to A 
•
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Fair Representations

 
Classification: a tale of two parties 

• Example: targeted advertising: Owner —> Vendor —> Prediction
•

 
Data Owner
•

 
Vendor
•
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Goal: Assign individual X representation Z by being 
aware of membership in group A

FAIRNESS THROUGH AWARENESS

Society Vendor

Z Y

A=1

A=0

X

Dwork, Hardt, Pitassi, Reingold, Zemel, 2012

(1). Individual Fairness: Treat similar individuals similarly

(2). Group Fairness: equalize two groups (A=1 = minority; 
A=0 is majority)  at the level of outcomes  (statistical parity)
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Goal: Learn a mapping from X to distributions over 
representations Z that is fair

Aims for Z:
1. Lose information about A: 

P[Z=k | A=1]  =  P[Z=k | A=0]
2. Retain information about X
3. Preserve information for classification so vendor can 

max utility [decisions Y = g(Z)]

FAIR REPRESENTATION LEARNING: FRAMEWORK

Society Vendor

Z Y

A=1

A=0

X

Zemel. Wu, Swersky, Pitassi, Dwork, 2013
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LEARNING ADVERSARIALLY FAIR 
TRANSFERABLE REPRESENTATIONS

Madras, Creager, Pitassi, Zemel, 2018

• The classifier is indifferent vendor, forcing the encoder to make 
the representations useful

• The adversary is the malicious vendor, forcing the encoder to 
hide the sensitive attributes in the representations
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Learning Flexibly Fair Representations

Important limitation: only considering single, fixed sensitive 
attribute  

Typically several, and which ones apply to a single situation 
is not known a priori 

Aim: learn flexibly fair representations - can be adapted to a 
variety of protected groups and their intersections: 

•Simple: easily adapt to different protected attributes  

•Compositional: fair to conjunctions of variables (subgroup 
discrimination — fair to women, not black women over 60) 

•Transferrable: same representation applies to several 
downstream tasks
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Flexibly Fair VAE (FFVAE)

Unsupervised training: no Y, but are given full range of  
sensitive attributes, values A 

Test time: specify subset of sensitive attributes and 
target Y 
•

 
Training 
•

 
Testing 
•
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FFVAE Objective

 
Aim for latent representations that are: 

1.Predictive — dimension of latent code corresponds to 
single underlying factor: high MI(bi, ai) 

2.Disentangled - posterior factorizes 
3.

LFFVAE(p, q) = 𝔼q(z,b|x)[log p(x |z, b) + α log p(a |b)]

−γDKL[q(z, b) | |q(z)∏
j

q(bj)] − DKL [q(z, b |x) | |p(z, b)]

reconstruction predictiveness

disentanglement prior
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FFVAE Experiments

-DSpritesUnfair: vary in color, shape, scale, orientation, 
Xposition, Yposition; Xposition and Shape sensitive 
- Difficult due to positive correlation in sensitive attributes 

-Communities and Crime: neighborhood statistics — sensitive 
attributes racePctBlack, blackPerCap, pctNotSpeakEnglWell; predict 
violentCrimesPerCap 

-CelebA: male, eyeglasses, chubby as sensitive attributes; tested 
on pairwise combinations, predict heavy-makeup, then attractive 
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Invertible Deep Networks

- Fairly recent development in deep networks: invertible 
networks 

- Invertible (aka Reversible, Bijective) Networks retain 
all information about input 
 

-Invertible networks with tractable Jacobian determinant, 
inverse allow maximum-likelihood based density modeling:

log px(x) = log pz(z) + log | JF(x) |

“Density Estimation using Real NVP”, Dinh et al., 2017

- Can also build strong invertible classifiers: loss of 
information is isolated to final linear layer
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Accessing Decision-space of Invertible Classifiers

Simplified readout structure: subset of dimensions 
represents logits of classifier 

zs zn

Fθ(x)

x

z

p(ck |x) =
exp(lk)

∑j exp(lj)
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Investigating Pre-images

zs zn

Fθ(x)

x

z
z̃s z̃n

Fθ(x̃)

x̃

z̃
zs z̃n

F−1
θ (zs, z̃n)

z

?
Result is an image which lies in pre-
image of logits configuration given x
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Excessive Invariance Across Tasks

Instead of learning about discriminative features for 
task, we have created analytical adversarial attack 

Deep classifiers are too invariant to task-relevant 
changes on various problems

SOTA ResNeti-RevNet i-RevNet

zs from :

F−1(zs, z̃n) :

z̃n from :
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Sampling from Logit Pre-image

-Discarded part of signal dominates image content! 

- Logits only capture a fraction of information relevant to humans 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Step Back: Primer on Adversarial Examples

- Core idea of adversarial example research:  
benchmark generalization under distribution shift 

- Deep nets exhibit striking, unintuitive failures 

 
 
 
 
 
 
 

 

- Poor understanding of failures, few theoretical guarantees 

- Invertible networks give new angle to formalize the problem!

Unrestricted Adversarial Examples, Brown et al., 2018

Distribution shift: distribution of test examples 
differs from training distribution.
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- Norm-bounded adversarial examples benchmark stability 

-Invariance-based adversarial examples are 
complementary to perturbation-based: benchmark 
excessive invariance

Invariance-based Adversarial Examples

F(x) = F(x*)
y ≠ y*

Invariance-based 
Adversarial Examples

F(x) ≠ F(x*)
y = y*

(Classical) 
Perturbation-based 
Adversarial Examples

Intuitively:  
 
Which task-relevant changes can be applied to the 
input that do not change the prediction?



Vector Institute & University of TorontoRichard Zemel 11/15/2019

Solving perturbation robustness may increase invariance 
vulnerability 
 
—> Excessive stability leads to new erroneous invariances

Relationship Non-trivial!

F(x) = F(x*)
y ≠ y*

Invariance-based 
Adversarial Examples

F(x) ≠ F(x*)
y = y*

(Classical) 
Perturbation-based 

Adversarial Examples

Need to control perturbation and invariance robustness 
alongside accuracy for models to generalize well

But: How to control task-dependent invariance?
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Insufficiency of Standard Objective

I(y; x) = I(y; Fθ(x))
= I(y; zθ

s , zθ
n)

= I(y; zθ
s ) + I(y; zθ

n |zθ
s )

argmaxθ I(y; zθ
s )

Standard Cross-Entropy classification loss 
maximizes bound on mutual information:

Information preservation allows us to “collect” 
invariant part of the signal:

No incentive to explain all task-relevant variability!
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Enforce Information Separation

No incentive to explain all task-relevant variability! 
 
A way out, maximize conditional mutual information:

argmaxθ I(y; zθ
s |zθ

n)

In practice, extend vanilla cross-entropy objective:

min
θ

max
θnc

ℒiCE(θ, θnc) =
C

∑
i=1

− yi log F̃zs
θ (x)i

=:ℒsCE(θ)

+
C

∑
i=1

yi log Dθnc
(Fzn

θ (x))i

=:ℒnCE(θ,θnc)

min
θ

ℒiCE(θ, θnc) =
C

∑
i=1

− yi log F̃zs
θ (x)i

=:ℒsCE(θ)
With independence term:
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Independence Cross-entropy in Practice

z_n governs nuisances, z_s the true task semantics  

Transformations in z_n space now cannot change class identity 

Not possible to create invariance-based adversarial examples 
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Breaking Classifier, one Pixel/Regularity at a Time

Breaking Classifiers, one Pixel/Regularity at a Time

% Error Dtrain DAdv
CE ResNet 00.00 87.83
CE fiRevNet 00.18 73.71
iCE fiRevNet 00.53 59.99
Difference 00.53 27.84

% Error Dtrain DAdv
CE ResNet 00.00 73.80
CE fiRevNet 00.00 57.09
iCE fiRevNet 00.02 34.73
Difference 00.02 38.33

DAdv

(b)(a)

DAdv

Dtrain Dtrain

Binary Textured
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Conclusions

•Can learn manipulable subspace —> range of novel examples 

•Methods enable control over information contained in learned 
representations 

•Invertible models allow insight into learned classifiers:  
-invariance needs to be controlled  
-learn models that generalize well 

•Underlying theme: information separation in representations
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Current Directions

•Application, extension of techniques to holy grail of 
ML: semi-supervised learning (few labeled examples)  

•Transfer learning: how do controlled representations 
enable transfer / learning of new tasks? 

•White-box models: incorporate known variables, relations 

•Uncertainty representations: can model know what it 
knows and does not know? 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